
Automating Planning and Scheduling of Shuttle Payload Operations

S. Chien', G. Rabideau', J. Willis', T. Mann'

'Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr, MS 525-3660

Pasadena, CA 91 109-8099
{ steve.chien, greggxabideau, tobias.mann1 @ ipl.nasa.pov

Colorado Space Grant College, University of Colorado
Campus Box 520

Boulder, CO 80309
' jason.willis 0 colorado.edu

Contact Author:
Steve Chien

Phone +1(626) 306-6144
FAX +1 (626) 306-6912

User Point of Contact: Jason Willis (contact information above)

Application Domain: Spacecraft mission operation

AI Techniques Involved: Automated Planning and Scheduling

Tool s and Languages - used: Common LISP,
Plan-it2 Sequencing tool (also in Common LISP)

Status: Deployed application (used to operate payload onboard shuttle flight STS-85)

Abstract

This paper describes the DATA-CHASER Automated Planner/Scheduler (DCAPS) system
which automated generation and repair of command sequences for the DATA-CHASER shuttle
payload. DCAPS uses general Artificial Intelligence (AI) heuristic search techniques, including
an iterative repair framework in which the system iteratively resolves conflicts with the state,
resource, and temporal constraints of the payload activities. DCAPS was used in the operations
of the shuttle payload for the STS-85 shuttle flight in August 1997 and enabled a 80% reduction
in mission operations effort and a 40% increase in science return.

http://colorado.edu

Problem Description
Generating command sequences for spacecraft operations can be a laborious process requiring a great deal of
specialized knowledge. Typically, spacecraft command sets are large, with each command performing a low-level
task. There are often many interactions between the commands relating to the state of the spacecraft. In addition,
due to spacecraft power and weight limitations, the resources available on-board spacecraft are often scarce. These
factors in combination make manual generation of command sequences a difficult process. Because of the
importance and expense of this process, tools to assist in planning and scheduling spacecraft activities are critical to
reducing the effort (and hence cost) of mission operations.

This paper describes a general system that uses Artificial Intelligence Planning and Scheduling technology which
was used to automatically generate command sequences for the DATA-CHASER shuttle payload operations. The
DATA-CHASER Automated PlannedScheduler (DCAPS) architecture presented supports direct, interactive
commanding, rescheduling and repair, resource allocation, and constraint maintenance.

DCAPS implements search algorithms for two problems: initial schedule generation, and schedule
repaidrefinement. In initial schedule generation, DCAPS generates a default schedule to perform science
observations from the null schedule (i.e., an empty schedule). DCAPS supports domain specific and randomized
initial schedule generation strategies. In schedule repaidrefinement, DCAPS accepts an existing schedule with
conflicts (i.e., resource oversubscription, state conflicts, etc.) and performs operations to make the schedule
consistent with the spacecraft constraints. DCAPS implements this functionality by using “iterative repair” search
techniques (e.g., [13). Basically, this technique iteratively selects a schedule conflict and performs some action in an
attempt to resolve the conflict. In iterative repair mode, DCAPS is naturally well-adapted for human interaction. In
this mode, a user can move, add and delete activities in order to alter the schedule to their preferences. DCAPS cay.,,,,;
then be invoked to repair state, resource, and temporal constraints caused by these modifications. Using an@;
automated planner/scheduler (e.g., DCAPS) in this fashion, command sequence generation can be performed by
scientists who need not be spacecraft and sequence engineer experts. This allows the scientist to become directly
involved in the command sequencing process. Additionally, if there are changes in the spacecraft state (e.g., faults)
or user-defined goals (e/gm science opportunities), the repair algorithm allows simple rescheduling that attempts to
minimize disruption of the original schedule. Finally, the highly restrictive payload resources and constraints are
constantly monitored and conflicts automatically avoided.

The DCAPS system was developed for operation of the DATA-CHASER shuttle payload, which was developed
and managed by students and faculty of the University of Colorado at Boulder. DATA-CHASER is a science
payload, with a primary focus on solar observation. The main activities for the payload involve science instrument
observations, data storage, communication, and control of the power subsystem. Science is performed using three
solar observing instruments: the Far Ultraviolet Spectrometer (FARUS), Soft X-ray and Extreme Ultraviolet
Experiment (SXEE), and Lyman-alpha Solar Imaging Telescope (LASIT). These are imaging devices that operate at
various spectra.

The payload resources include power, tape storage, local memory, the three instruments, and the communication
bus. DATA-CHASER is also constrained by externally-driven states such as the shuttle orientation and external
events such as shuttle venting of waste materials, which affect when certain science activities can be scheduled.
Payload activities must be sequenced while avoiding or resolving The remainder of this paper is organized as
follows. First, we describe the DATA-CHASER shuttle payload and mission objectives. Next, we describe how the
payload is modeled. We then describe in detail the DCAPS approach to automated command sequence generation
and repair. Then, we describe how DCAPS fits in to the overall flight and ground system architecture for the DATA-
CHASER mission. We then describe the experience and results from the use of DCAPS during the STS-85 flight.
Finally, we discuss related work and conclusions.

DATA-CHASER Payload
DATA-CHASER consists of two synergistic projects, DATA and CHASER, which flew as a Hitchhiker (HH)
payload aboard STS-85 on the International Extreme Ultraviolet Hitchhiker Bridge (IEH-2) in August 1997 [2]. A
technology experiment, DATA (Distribution and Automation Technology Advancement) demonstrated advanced
semi-autonomous, supervisory operations. CHASER (Colorado Hitchhiker and Student Experiment of Solar

Radiation) was a solar science experiment that served to test DATA. The DATA technologies support cooperative
operations distributed between different geographic sites as well as between humans and machines, on-board
autonomy, human control, and ground automation.

CHASER consists of three co-aligned instruments that take data in the far and extreme ultraviolet wavelengths.
The first and oldest of these instruments (17 years old) is FARUS, which takes a continuous spectrum from 115 nm
to 190 nm with a resolution of .12 nm. LASIT takes images of the full solar disk of the sun in the Lyman-alpha
wavelength (121.6 nm) with a Charge Injected Device imager. The final instrument in the scientific package, SXEE,
consists of four photometers, each having a different metallic coating so as to enable them to look at different
wavelengths between 1 and 40 nm. The objective of these instruments is to measure the full disk solar ultraviolet
irradiance and obtain images of the sun in the Lyman-alpha wavelength, providing a correlation between solar
activity and radiation flux as well as an association of Lyman-alpha fluxes with individual active regions of the sun.

The flight segment of the DATA-CHASER project consists of a canister that is equipped with a Hitchhiker
Motorized Door Assembly (HMDA), which houses the instruments and their support electronics. The second canister
contains the flight computer for the payload as well as the 2 GB Digital Audio Tape (DAT) drive that is used to store
all data that is collected during the mission. The payload data is also sent to the ground system through both low rate
(available 90% of the time, at 1200 bps), and medium rate (available when scheduled, at 200 kbps). The payload is
also capable of receiving commands sent from the ground system when uplink is available.

During the mission, the DATA-CHASER payload will be operating in four different modes. Most of the time,
when DATA-CHASER is powered, it will be in a passive mode where it is monitoring its state and notifying the
ground of any changes. During the time in the mission when the orbiter is scheduled to point the bay at the sun, the
DATA-CHASER payload will shift into solar active mode where all instruments take data.

The data is both written to the DAT drive on board and downlinked to the ground system for immediate data
analysis. Several times during the mission, DATA-CHASER will take data while not pointing at the sun. This data is
used for testing various portions of the DATA experiment with non-solar-pointing data in addition to being used for
instrument calibration.

One of the consequences of flying on the shuttle system is that shuttle resources are limited, and their availability
is subject to change every 12 hours. These resources include access to uplink and downlink channels, and time that
your payload is allowed to operate. In addition to these resources, any given payload may also have environmental
constraints as to how much contamination the payload can take. Another example is thermal constraints, such as
maximum solar point time.

STS-85, the flight that DATA-CHASER payload is scheduled to fly on, is one of the most complicated flights that
the shuttle has flown to date. In addition to the DATA-CHASER payload, there are four other payloads sharing the
same HH bridge. In addition to the IEH-2 bridge, there is another HH bridge, a pallet payload, and a Spartan
deployable satellite. Needless to say the shuttle pointing requirements are considerably tight.

In addition to modeling what the internal constraints and resources of the payload are, DCAPS must also search
the shuttle flight plan for times when we are allowed to operate, downlink our data, uplink new command sets, and
when we have to protect the scientific instruments from contamination events.

DATA-CHASER is an interesting scenario for scheduling because of the complex data and power management
involved in the science gathering. An automated scheduler must find an optimal “data taking” schedule, while
adhering to the resource constraints. In addition, the scientists would like to perform dynamic scheduling during the
mission. As an example, the summary data may indicate the presence of a solar flare. If this occurs, scientists have
different requirements and goals, such as higher priorities on certain instruments or longer integration times. These
new goals may require a different schedule of activities.

Modeling the Payload

In order to use the DCAPS system, the user must write a software model of the mission activities and spacecraft
resources. DCAPS uses the Plan-It2 system [4] to model the spacecraft activities and constraints, thus the model is
expressed in the Plan-It2 modeling language. Modeling in the Plan-It2 language involves defining a set of objects
and describing how they interact. These definitions are then used by the scheduler to create instances of the objects
and reason about specific interactions (e.g., state and resource conflicts) in the schedule. The two major types of
objects in the model are activities and resources.

Activities
Activities are used to model the events that affect the DATA-CHASER payload and the actions that the DATA-
CHASER payload can take. All activities have certain basic components: a duration, a list of slots, and a list of slot-
value assignments. The activity duration is simply a time range. Slots are parameters of activities that may represent
resource usage. In addition, certain types of activities (described below) have a list of subactivities. For these
activities, the user can also define a set of temporal constraints between the subactivities. Next, we describe in more
detail the four basic types of activities: events, steps, step-activities, and activities.

Events are used to model activities that do not occur in a fixed relation to other activities (e.g. Tracking and Data
Relay Satellite System (TDRSS) contacts) and are not part of an activity hierarchy.

Steps are the “leaf” nodes in the activity hierarchy tree. In other words, they do not contain any subactivities. Steps
cannot be instantiated without their parents and are used to model the activities at the lowest level of detail. For
instance, we model an activity called CHASER-heating, which consists of two steps, CHASER-heater-on and
CHASER-heater-off.

Step-activities are used to model activities at a middle level of abstraction. They can contain steps, but must also
have parent activities. In DCAPS, we model an activity SXEE-Data-Take, which models the SXEE instrument
opening its aperture and taking a scan. In this case, there is a step-activity called SXEE-Scan-Step, which has sensor
read steps and cannot be instantiated by itself.

Activities are used to model activities at the highest level of abstraction. They are the “root” nodes in the hierarchy
tree, containing subactivities, but no parent activity. An abstract activity inherits all attributes of its predecessors.
When an abstract activity is detailed, it is replaced by its subactivities - showing events and resource usage at a finer
granularity. The activity and event objects can be instantiated by the scheduler, and the scheduler can use methods to
access the varying levels of abstraction.

Resources
Resources define the various physical resources and the constraints they impose. Resources come in essentially five
varieties: state, concurrency, depletable, non-depletable, and simple.

them. For each state resource, the modeler must specify the possible values that the state can be. Most of the systems
have at least one state variable, which is whether or not they are activated. The orientation of the payload is also
modeled as a state variable.

Concurrency resource constraints are used to model rules that stipulate that an activity either must occur during
another activity or cannot occur at the same time as another activity. One relationship that is modeled with a
concurrency resource is the requirement that a downlink or uplink can only occur during contact with a TDRSS
satellite. This is modeled as a resource that is present when there is TDRSS contact activity and required when there
is a downlink or uplink activity.

Depletable resources are used to model resources with a fixed quantity, such a fuel or RAM. Activities can use
some finite amount of a depletable resource, which may or may not be restorable. The amount used by the activity is
persistent to the end of the schedule. In addition, the modeler must specify a maximum capacity for each depletable
resource. In DCAPS, RAM is modeled as a depletable resource. Science observations produce data and use some
amount of the depletable resource. Other activities, such as a transfer to permanent storage, may restore this
resource.

Non-depletable resources are used to model resources with a limit to the usage at any one time, but are reset at the
end of the activity that consumes the resource. Similar to depletable resources, nondepletables are assigned a
maximum capacity. Resources like power are modeled with non-depletable resources.

Simple resources are used to model devices that can only be used by one activity at a time. For instance, each of
the instruments on board DATA-CHASER, FARUS, SXEE, and LASIT, are capable of taking only one image at a
time and are modeled with simple resources.

The DATA-CHASER model is fairly large, containing 67 resources and 58 activity types. The payload required 7
resources to model the impact of exogenous events such as shuttle contamination events, dayhight cycles, shuttle
maneuvers, and other external activities which impact payload operations. The payload also required 6 resources to
represent possible failed states for major instrumentshbsystems. For each instrument, a number of resources would

State resources are used to model the systems in the DATA-CHASER payload that have states associated with t

be required. For example, for SXEE, there are 6 resources. One resource represents the instrument itself. Two
resources are required to represent the instrument door - one for the operdclosed state and another for the closing
process which draws power. A SXEE-failure resource represents if the instrument is known to have failed (and
hence disables the scheduler from scheduling any SXEE activities). A SXEE-power resource tracks the power
consumption of the SXEE instrument, and a SXEE-relay resource models the hardware relay used to enable/disable
the SXEE instrument. In addition to the instruments, there are a number of system-wide resources to be tracked by
DCAPS. Total power consumption and energy usage (for thermal considerations) are tracked for each canister.
Finally, science and engineering data must be processed through a set of 3 buffers onboard the spacecraft as well as
the secondary storage DAT tape drive.

The DATA-CHASER model also contained a significant number of activity types (58). Of these the vast majority
(25) were hardware control commands. Fourteen commands related to acquisition of science and engineering data,
and 6 commands controlled the downlink capability (TDRSS, medium-rate, and low-rate). Nine (9) commands were
used to represent possible subsystem failures (e.g., to disable use of certain instruments and subsystems). Seven (7)
activities were used to represent exogenous events (such as medium rate downlink coverage, solar.pointing for the
shuttle bay, etc. The activities can also be viewed from an instrument centric perspective. From this viewpoint, the
SXEE instrument has commands to: transfer SXEE data from the SXEE instrument to the general instrument buffer,
so open and close the SXEE instrument door, to control the SXEE-relay which enables use of the instrument, to take
a data scan, to take a dark scan (with the instrument door closed for calibration purposes), and two macro-commands
which each perform several of the typical steps to take and transfer image to storage.

Use of AI Technology: The DCAPS Automated PlannedScheduler
The DATA-CHASER Automated Planner / Scheduler was part of the DATA-CHASER mission operations software.
It was a ground-based intelligent tool used for developing a schedule of commands for uplink to the payload [3].
There are two phases of operating the DCAPS system: initial schedule generation and interactive repair phase.

During initial schedule generation, DCAPS produces a complete, valid schedule of payload operation commands
from a model, initial state, and set of high-level goals. In the interactive repair phase, it takes intermediate, invalid
schedules (resulting from user changes) and produce a similar, but valid schedule.

The planner/scheduler consists of two main parts, the Plan-IT I1 (PI2) sequencing tool [4] and the schedule
reasoner (see Figure 2). PI2 was written by William C. Eggemeyer and originally designed as an “expert assistant
sequencing tool.” PI2 includes a GUI that allows for easy manipulation of the schedule. In addition, it serves as an
activity/resource database that supplies valuable information to the schedule reasoner. PI2 supports complex
monitoring and reasoning about activities and the various constraints between them. The schedule reasoner uses
Artificial Intelligence (AI) techniques to automatically generate new schedules, repair existing faulty schedules, and
optimize valid schedules. PI2 provides information about resource availability and conflicts; the scheduler must
decide which activities to use to resolve the conflicts and where to place the activities temporally. Plan-It2 and the
schedule reasoner work together to provide fast, easy sequencing of mission activities.

Schedule Data-Base
In the DCAPS system, PI2 is used primarily as a “schedule database” and resource constraint checker. It was
originally developed as a graphical sequencing tool. Activities and resources are displayed on a graphical output. An
activity represents some mission event that occurs over a period of time and uses some of the mission resources. A
resources represents some limited available material whose usage is modeled as discrete blocks over time.

For each type of activity and resource, PI2 displays a timeline, which represents the behavior of that
activity/resource type over a period of time. When activities are created, they are placed at a specified time on the
timeline. Resources used by that activity are updated to reflect the additional usage. In addition to schedule
visualization, PI2 provides an easy-to-use interface for modifying the schedule. Moving activities is as simple as a
click-and-drag with a mouse.

PI2 helps ease the burden on sequencers by continually monitoring all activities in the sequence. As activities are
added or moved, the change in resource usage is automatically updated, and the new resource profiles are displayed.
With this information available, the user can immediately see the effects of a schedule change on the mission
resources. For each resource, PI2 also monitors any conflicts that are occurring on the resource.

Conflicts are time intervals where the limitations of the resource have been exceeded. These conflict intervals are
highlighted in red to flag their existence for easy identification. Finally, PI2 monitors any dependencies that have

been defined between activities and resources. The values of specific parameters of activities and resources may be
functionally dependent on values of other parameters. PI2 automatically keeps these parameter values consistent.

PI2 also helps out by serving as an activity and resource database, producing/accepting information to/from a
sequencer. The functional interface to PI2 has been extended to better assist an automated sequencer. A basic set of
“fetch” functions have been developed to quickly retrieve information about conflicts and the resources and activities
involved in the conflict. For example, an interface function has been written to fetch the legal times where an activity
can occur in the schedule. Here, “legal times” refers to positions where no conflicts are caused by any of the
resources used by the given activity.

In addition to fetching information about the current state of the schedule, the user will need to be able to change
the current state in attempt to fix or optimize the schedule. Some basic primitive functions are provided by PI2 to
allow an external system to add and move activities, change their duration, etc. These primitives make up the set of
actions that a scheduler can take when trying to resolve conflicts.

Schedule Reasoner
The second major component of DCAPS is the automated schedule reasoner. The schedule reasoner provides two
capabilities: initial schedule generation, and schedule repair. In initial schedule generation, a schedule is generated
from a set of user requested activities. In schedule repair, the scheduler will automatically restore the consistency of
the sequence after arbitrary user interaction by rescheduling using repair actions. The scheduler repairer iteratively
attempts to resolve each conflict, which involves making choices on what to repair and how to repair it.

Zniriul Schedule Generator-The first step in sequencing spacecraft commands is to come up with an initial schedule
of events for each phase of the mission. This process has been partially automated in DCAPS with the schedule
generator. Expressing schedules and partial schedules to be generated is done through user defined goals. There are
two ways in which user goals are handled in DCAPS. First, initial science and engineering goals are handled with
parameterized scheduling functions. Each function implements a goal. For example, there is a “Place-Power”
function that schedules power switching activities in appropriate places based on some engineering parameters.
Parameters may include such things as a minimum time between switching, or a power on during a particular state of
a different resource.

Second, science goals can also be expressed through data-take requests, which do not have to be a part of the
initial schedule generation. For example, a scientist can request ten additional scans from a particular instrument to
occur any time during some phase of the mission. This type of general request does not include specific locations or
necessary supporting activities. The scheduler will simply place them at random positions and allow any conflicts to
be resolved by the automated repairer.

DCAPS supports two modes for automated initial schedule generation: a domain specific schedule generation
algorithm and a randomized scheduling algorithm. The domain specific scheduling algorithm is shown below. In
this approach, we the scheduler insert necessary setup activities (powering on the payload and controlling the payload
doors) and schedules an even mix of observations by sweeping forward in time. However, little effort was devoted
towards optimizing this approach.

buildInitialSchedule()
turn on the two canisters 2 hours into the mission

and leave them on for the duration (cmds DataRelayOn, ChaserRelayOn)

for each interval in which the shuttle is pointing at the sun and there is not a contamination event
open the hitchhiker door (HMDAOpen) at the start of the interval
close the hitchhiker door (HMDAClose) at the end of the interval

for each interval in which the shuttle is not in a solar pointing state for longer than 30 minutes
turn on the canister heater 30 minutes after the solar pointing
turn off the canister heater at the beginning of the next solar pointing interval

place farus, sxee, lasit data-takes
loop until cant no legal times for alldatatake

find legal times for alldatatake (during the solar pointing non contamination events)
place alldatatake at earliest possible start time
place a DAT transfer after the data-take

DCAPS also supports a randomized initial schedule generation algorithm. In this approach, the scheduler merely
uses random placement to attempt to place science observations. As expected, this approach performs significantly
worse than the domain specific approach.

Schedule Repairer-The generated initial schedule may still violate some of the spacecraft constraints. Also, the
scientists and engineers might feel that their goals were not completely satisfied or that they could be better achieved
by an alternative plan. In these cases the users want to be able to interact with and modify the generated schedule.
These modifications may introduce new conflicts into the schedule. The schedule repair capability can automatically
repair these introduced conflicts, freeing the user from this burden and reducing overall mission operations effort.
Additionally, freeing the user of this burden of lower-level repair, allows the user to spend more time modifying the
schedule - allowing the combined user/software system to explore more of the schedule space.

Before describing the schedule repairer, we must present a few definitions. A “conflict,” is a violation of one of
the resource constraints. A conflict occurs over a certain time period and is caused by activities called “culprits.” For
example, if the power capacity is exceeded from time t l to time t2, then a conflict exists from time t l to time t2, and
the culprits are any activities that use power during this time (see Figure 3).

1-1 Cu lp r i t s
There are three possible actions to take in attempt to

resolve a conflict: move, add, or delete an activity. The
“move” action involves moving one of the culprits of
the conflict to a position that will either resolve the

Conf l ic t conflict or at least ensure that the moved activity is no

adding a new activity. These activities usually provide
some resource that was previously not available.
Finally, a conflict can also be resolved by simply
deleting the culprits. This is obviously not a preferred
method and is only used as a last resort:

The resolution of a conflict greatly depends on the
type of resource that is in violation. There are five

different types of conflicts corresponding to the five types of resources. A state conflict occurs when an activity
requires the resource to be in a state other than its current state. The culprits in this type of conflict are all of the
activities that require the incorrect state and the activity that changed the resource to the incorrect state. Several

t”-i
Power .capacf.ty.“ -.......... ” longer a culprit. Some conflicts can be resolved by

Figure 3: Conflicts

ResolveConflicts (max-iterations)
(

iterations = 1

Loop while conflicts <> () &&
iterations <= max-iterations)

select a conflict
select a method for resolving a conflict

case move
(move, add, delete)

select culprit to move
select time to move culprit

select activity to add
select start time for new activity

case delete
select activity to delete

if no-progress then UndoLastAction()
iterations := iterations + I

case add

“_,”,__,_.___I -”
I

Figure 4: Iterative Repair Algorithm

k..’

possibilities for resolving a state conflict include
moving the culprits to another interval where the
required state is present or adding an activity that will
change the state of the resource to the required state.

A concurrency conflict is when an activity requires
the presence of the resource during a time for which it is
absent. The culprits in this type of conflict are all of the
activities that require the presence of the resource. To
resolve a concurrency conflict, the scheduler can move
the culprits to an interval where the resource is present
or add an activity that provides the presence of the
resource.

A depletable conflict means that the activities of the
schedule have used too much of the resource. In this
type of conflict, the culprit is the activity that caused the
resource to overflow during the time that it first
overflows. Some depletable resources have “resetter”
activities and this sort of conflict can be resolved by

adding an activity that “resets” the available resource. For example, a downlink activity will free up space in the
downlink buffer. A non-depletable conflict is when activities overuse a resource during a particular time interval.
The culprits in this type of conflict are all of the activities that use the resource during the conflict interval. This sort
of conflict can be resolved by moving or deleting culprits. There are no activities in the DATA-CHASER model that
can add to a non-depletable resource.

Simple conflicts occur when two or more activities use the same simple resource at the same time. This type of
conflict can only be resolved by moving culprits.

Given an initial schedule, the schedule repairer must find the correct activities to move, add, or delete and position
them temporally in such a way that no conflicts remain. The scheduler relies on some interface functions to PI2 that
describe the conflicts in the current schedule, describe the activities that could resolve a conflict, and manipulate the
schedule. The schedule repair algorithm is an iterative loop over the conflicts in the schedule (see Figure 4). First,
the repairer must select a conflict to attack. Next, a method for resolving the conflict is chosen. Depending on the
conflict type, there may be up to three methods for attacking the conflict: move, add, and delete. If “move” is
chosen, then a culprit must be picked from the list of culprits in the conflict. A duration and start time are chosen for
the culprit, and the culprit is moved to the new location. If “add” is the chosen method, then the repairer must decide
which activity type to instantiate. Again, a duration and start time must be chosen for the new activity, and the
activity is inserted at the chosen time. If the repairer chooses to “delete” an activity, then it simply must choose an
activity to delete, and delete it. After the chosen action is performed, the schedule repairer checks to see if progress
was made. We define progress as either decreasing the number of conflicts, decreasing the number of culprits, or
decreasing the duration of the conflicts. If the action did not succeed in resolving the conflict, or progress was not
made, then the action is “undone.” Otherwise, the new set of conflicts are found, and the loop counter is incremented.
This process continues until all conflicts are resolved, or the loop counter exceeds a user-defined maximum bound.
For every choice point in the algorithm, where a selection must be made from a list of possibilities, the schedule
repairer is allowed to backtrack to that point. What this means is, that if a particular choice fails, the schedule
repairer may choose another from the list before giving up. If all choices fail, then a previous decision must have
been incorrect, and the repairer can backtrack to the preceding choice point. All choice points, including the decision
on whether or not to backtrack, are heuristic decisions and may customized to a particular domain.

Thus, there are several choice points in the repair algorithm which are relevant for heuristic guidance: 1. conflict
selection, 2. selection of move, add, or delete, 3. selection of an activity to with which to move add or delete, and 4.
Temporal placement of the a moved or added activity. Below we outline the heuristics implemented within DCAPS,
in each case we highlight the heuristic method used by an asterisk.

Move lowest priority

Add the activity which has the fewest legal times
Add highest priority

Delete the culprit which participates in most

For Add operations Add activity that reduces conflict most*

For Delete operations Delete culprit that contributes most to conflict

Delete lowest priority

Choose earliest start time
Choose latest start time for state conflicts and
earliest start time for resource conflicts*

Time selection Choose latest start time

Schedule Optimization - Often there may be many legal schedules all of which are not equally preferred by the
users. In the extreme case, the empty schedule (e.g., do nothing, or some schedule of this form) is usually a legal
schedule. In the DATA-CHASER mission, the dominant quality measure is science return - which can be roughly
measured by the number of science measurements taken and downlinked in the current planning cycle. In order to
improve the quality of the DCAPS-produced schedules, we implemented a simple schedule optimization algorithm
which accepts as input an oversubscribed schedule. This algorithm first expands all of the activities in to the lowest
level (because the most detailed resource modeling may allow a more densely packed schedule). The algorithm then
performs a forward sweep through the schedule in which each activity is moved to its earliest start time. This has the
effect of packing the activities towards the start of the schedule potentially opening room for the extra activities
towards the end. In the DATA-CHASER case, the oversubscribed activities are science data-takes and the
oversubscription is due to over-use of the instrument, communications bus, and buffer resources. The schedule
optimization algorithm takes an oversubscribed schedule and packs in the science observations more closely - thus
allowing further science observations to fit into the schedule. This optimization algorithm can be viewed as a
simplified version of the schedule packing described in [151 and the doubleback algorithm described in [161.

Application Development, Deployment, and System Integration
DCAPS was developed by the JPL Artificial Intelligence group as part of a set of early prototypes of automated
planning and scheduling engines for use by NASA’s New Millennium Program. Later, when the DATA-CHASER
mission operations automation problem was studied, we determined that the iterative repair capabilities of DCAPS
would be well suited for mixed-initiative partially automated, human in the loop, shuttle payload operations. At this
time DCAPS was modified to meet a number of minor user interface requirements and the DATA-CHASER model
was constructed over a series of software spirals with each model increasing in coverage and fidelity. The total JPL
AI Group effort involved in the development of DCAPS and initial modeling was approximately 1.4 work-year. The
total effort by CSGC to deploy the DCAPS system was on the order 0.4 work-years.

DCAPS was integrated into the End-to-End Mission Operations System (EEMOS) used for the DATA-CHASER
portion of the STS-85 payload. This EEMOS architecture is also being evaluated as part of the Fire and Ice pre-
project [6]. The DATA-CHASER EEMOS consisted of seven parts: Command and Control, Fault/Event Detection
Interaction Reaction (FEDIR), DATMO (Data handling), the Ground Database, the Graphical User Interface, the
software testbed, and finally the planning and scheduling system (DCAPS).

The command and control language used, System Command Language (SCL, also known as Spacecraft Command
Language), integrates procedural programming with a real-time, forward-chaining, rule-based system. DCAPS
interfaces with SCL through DATMO by sending script scheduling commands to be scheduled either on the flight
or ground system. This interface is implemented by mapping PI2 activities to SCL scripts that were written prior to
flight and can be scheduled or event-triggered by activating rules. A list of these scheduling and rule activation
commands are then sent to DATMO which forwards the list to the SCL Compiler. Once compiled, the list is sent to
the payload through the next available uplink.

DCAPS is also interfaced with the ground EEMOS database, 0 2 . 0 2 is an object-oriented database used to store
all mission data and telemetry that is downlinked by the payload. 0 2 also stores a command history. Through
DATMO, DCAPS requests current payload status data in the form of sensor values in the telemetry history. It also
requests lists of all commands uplinked during a given time interval. These are used by DCAPS to infer command
completion status as well as to get the current state of the payload so that a new schedule can be created.

During mission operations, approximately every six hours , DCAPS was asked by an operator to generate script
scheduling commands and rule activations for the next six hours according to its schedule. Once this list was
generated, it was reviewed by the Mission Operations staff on duty. When judged to be correct, scheduling and rule
activation commands would be sent to DATMO during the next available uplink window.

If during that six hour period there was a major change in the NASA activities, the operations staff could use
DCAPS to update the schedule script on-board. If so desired, DCAPS could generate an updated command list, ask
the user to verify it, and send the list to DATAAO to be uplinked.

Application Use and Payoff Impact and Results from Use During STS-85
Unfortunately, difficulties were encountered during the development and integration of the real-time DATA-
CHASER flight software. Due to these difficulties and hard shuttle payload delivery constraints, the real-time

onboard command execution software for the payload did not have several capabilities which were originally
designed. First, the onboard software was unable to command the SXEE and LASIT instruments. Second, the
onboard software did not have the capability to store and execute time-tagged command loads, thus all operations
had to be carefully synchronized with real-time shuttle uplink windows. Third, the onboard tape storage device
(DAT) was not functional. This meant that data storage was limited to the onboard solid state buffers. However,
since the LASIT instrument was the most significant producer of data by over an order of magnitude this was not a
major problem. The first and second limitations described above meant that having an automated planning system to
automatically coordinate the complex timing constraints was even more important; manually attempting to enforce
such timing constraints would increase the chance of operator error causing a loss of data. Likewise, being able to
replan quickly and automatically when shuttle activities changed (such as downlink or uplink windows) was also
critical.

Carrying the DATA-CHASER payload, STS-85, the Space Shuttle Discovery launched 7:41AM PST on Thursday
August 7, 1997. Mission operations, including mission planning and scheduling were performed for the 2 week
flight. During the first 5 days of DATA-CHASER operations, DCAPS was used in manual mode. In this mode
activities were placed manually and DCAPS was used to: validate constraints, identify constraint violations, and to
generate the actual command files. During the last 7 days of the payload operation, DCAPS was used to
automatically generate schedules. In this phase the domain specific initial schedule generator was used to generate
an initial schedule. Due to network lag times (DATA-CHASER was operated primarily from Colorado Space Grant
and due to machine shortages DCAPS was running at JPL) use of the iterative repair techniques were somewhat
limited. However, this turned out not to impact operations significantly, in many cases minor conflicts were repaired
manually.

The DCAPS automated scheduling capability significantly impacted DATA-CHASER mission operations.
DCAPS enabled an 80% reduction in the amount of effort to produce operations plans. Manual generation of a 6-
hour operations plan would require from 30 to 60 minutes in manual mode of operations and from 7-9 minutes using
the DCAPS automated scheduling capability. This reduction in effort is because DCAPS can automatically generate
an acceptable or near acceptable schedule very quickly. The number of modifications (if any) to make a DCAPS
generated schedule acceptable can be made far faster than manually generating a schedule from scratch. DCAPS
also enabled a 40% increase in science return. Manually generated plans had 2-3 instrument scans per viewing
opportunity whereas DCAPS generated plans had 3-4 scans per viewing opportunity. This is because DCAPS could
directly monitor and track all of the complex timing constraints involved in the instrument activities and pack
activities more tightly than operators manually placing instrument activities. During this 7 days of DCAPS
automated use, DCAPS scheduled a total of 93 science scans and 202 payload commands.

One significant feature of the DCAPS system is its declarative representation of flight rules and spacecraft
constraints. This feature was tested during the STS-5 flight in the following manner. When initial command
sequences were uplinked, a number of commands immediately following a reset command were rejected by the
flight software. This was due to the fact that the initial flight rules were constructed with the understanding that
immediately following a reset, commands could be issued to the payload. Actual opeations showed that a delay of
30 seconds was needed before the payload could accept commands. When this problem was noticed and isolated, it
was a simple manner to quickly update the DCAPS model to require this delay so that future command sequences
would execute without problem. This aspect of ease of modification is key in that spacecraft characteristics and
operating procedures constantly evolve throughout the mission lifecycle as the spacecraft characteristics and mission
priorities evolve.

Maintenance: Maintenance of the DCAPS software system beyond the STS-85 flight is not an issue because there
are limited plans for DCAPS beyond STS-85. DCAPS was used to demonstrate the applicability of planning to
generating mission plans for evaluating difference science experiment strategies and for evaluating the impact of
alternative hardware designs on science return [171. Plans for the current CSGC mission (called Citizen Explorer, or
CX- 1) are to use the ASPEN [IS] planning and scheduling system for mission operations automation. ASPEN is the
planning and scheduling system more recently developed by the JPL Artificial Intelligence Group and incorporates
many design enhancements and lessons learned from the DCAPS experience.

Summary and Related Work
Iterative algorithms have been applied to a wide range of computer science problems such as traveling salesman [7]
as well as Artificial Intelligence Planning [8,9,10,1 I] . Iterative repair algorithms have also been used for a number

of scheduling systems. The GERRY/GPSS system [I , 121 uses iterative repair with a global evaluation function and
simulated annealing to schedule space shuttle ground processing activities. The Operations Mission Planner (OMP)
[131 system used iterative repair in combination with a historical model of the scheduler actions (called chronologies)
to avoid cycling and getting caught in local minima. Work by Johnston and Minton [5] shows how the min-conflicts
heuristic can be used not only for scheduling but for a wide range of constraint satisfaction problems. The OPIS
system [141 can also be viewed as performing iterative repair. However, OPIS is more informed in the application of
its repair methods in that it applies a set of analysis measures to classify the bottleneck before selecting a repair
method.

In summary, DCAPS represents a significant advance from several perspectives. First, from a mission operations
perspective, DCAPS is important in that it significantly reduces the amount of effort and knowledge required to
generate command sequences to achieve mission operations goals. Second, from the standpoint of Artificial
Intelligence applications, DCAPS represents a significant application of planning and scheduling technology to the
complex, real-world problem of spacecraft commanding. In particular, significant quantitative improvements in
operations efficiency were documented during the STS-85 flight. Third, from the standpoint of Artificial
Intelligence research, DCAPS mixed initiative approach to initial schedule generation, iterative repair, and schedule
optimization represents a novel approach.to solving complex planning and scheduling problems.

Acknowledgments
This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with
the National Aeronautics and Space Administration. The authors also gratefully acknowledge the contributions of
other participants in the DCAPS and DATA-CHASER projects who also contributed to the work described in this
paper: Peter Stone and Sam Siewert.

References
[l] M. Zweben, B. Daun, E. Davis, and M. Deale, “Scheduling and Rescheduling with Iterative Repair,” in
Intelligent Scheduling, Morgan Kaufman, San Francisco, 1994.

[2] DATA-CHASER Documents, Annual Report.

% [3] G. Rabideau, S . Chien, T. Mann, C. Eggemeyer, P. Stone, and J. Willis, “DCAPS User’s Manual,” JPL Technical
Document D- 1374 1, 1996.

3 [4] W. Eggemeyer, “Plan-IT-I1 Bible”, JPL Technical Document, 1995.

[5] M. Johnston and S . Minton, “Analyzing a Heuristic Strategy for Constraint Satisfaction and Scheduling,” in
Intelligent Scheduling, Morgan Kaufman, San Francisco, 1994.

[6] S . Siewert and E. Hansen, “A Distributed Operations Automation Testbed to Evaluate System Support for
Autonomy and Operator Interaction Protocols,” 4th International Symposium on Space Mission Operations and
Ground Data Systems, ESA, Forum der Technik, Munich, Germany, September, 1996.

[7] S . Lin and B. Kernighan, “An Effective Heuristic for the Traveling Salesman Problem,” Operations Research
Vol. 21, 1973.

[SI S . Chien and G. DeJong, “Constructing Simplified Plans via Truth Criteria Approximation,” Proceedings of the
Second International Conference on Artificial Intelligence Planning Systems, Chicago, IL, June 1994, pp. 19-24.

[9] K. Hammond, “Case-based Planning: Viewing Planning as a Memory Task,” Academic Press, San Diego, 1989.

[IO] R. Simmons, “Combining Associational and Causal Reasoning to Solve Interpretation and Planning Problems,”
Technical Report, MIT Artificial Intelligence Laboratory, 1988.

[121 M. Deale, M. Yvanovich, D. Schnitzius, D. Kautz, M. Carpenter, M. Zweben, G. Davis, and B. Daun, “The
Space Shuttle Ground Processing System,” in Intelligent Scheduling, Morgan Kaufman, San Francisco, 1994.

[13] E. Biefeld and L. Cooper, “Bottleneck Identification Using Process Chronologies,” Proceedings of the 1991
International Joint Conference on Artificial Intelligence, Sydney, Australia, 1991.

[141 S. Smith, “OPIS: A Methodology and Architecture for Reactive Scheduling,” in Intelligent Scheduling, Morgan
Kaufman, San Francisco, 1994.

[15] A. Aldas, “A Post-process Optimization Algorithm for Resource-constrained Project Scheduling,” in the
Working Notes of the International Workshop on Planning and Scheduling for Space Exploration and Science,
Oxnard, CA, October 1997.

[16] J. Crawford, “An Approach to Resource Constrained Project Scheduling,” in Proceedings of the Artificial
Intelligence and Manufacturing Research Planning Workshop, Albequerque, N M , June 1996. Also
http://www.cirl.uoregon.edu/crawford/papers/albur.Ds

[17] R. Sherwood, S. Chien, G. Rabideau, T. Mann, “Design for X (DFX): Operations Characteristics Spacecraft
Design Analysis Tool,” Working Notes of the 1997 International Workshop on Planning and Scheduling for Space
Exploration and Science, Oxnard, CA, October 1997.

[181 A. Fukunaga, G. Rabideau, S. Chien, D. Yan, “Towards an Application Framework for Automated Planning and
Scheduling,” Proceedings of the 1997International Symposium on Artificial Intelligence, Robotics and Automation
for Space, Tokyo, Japan, July 1997.

http://www.cirl.uoregon.edu/crawford/papers/albur.Ds

